Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xue-Mei Li,^a Lei Wang,^b Jian-Hua Xu,^b Shu-Sheng Zhang^a and Hoong-Kun Fun^c*

^aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China, ^bDepartment of Chemistry, Nanjing University, 210093 Nanjing, People's Republic of China, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.042 wR factor = 0.117 Data-to-parameter ratio = 12.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved Ethyl 2-(acetylamino)-2-(9-hydroxy-10oxo-9,10-dihydro-9-phenanthrenyl)acetate

In the title compound, $C_{20}H_{19}NO_2$, the phenanthrene moiety is non-planar, with the dihydrobenzene ring distorted towards a twisted envelope conformation. The molecules are linked into chains along the *a* axis by $O-H\cdots O$ hydrogen bonds; two other intermolecular hydrogen bonds interconnect these chains into a three-dimensional framework. Received 16 October 2003 Accepted 27 October 2003 Online 8 November 2003

Comment

In our recent investigation on the photoinduced reactions of phenanthrenequinone with oxazole derivatives, we have carried out photoreactions of phenanthrenequinone with 2-methyl-5-ethoxyoxazole and obtained the title compound, (I), as one of the products. This compound is formed by the hydrolysis of the oxetane product derived from [2 + 2]-photocycloaddition of the two reactants.

The bond lengths and angles in (I) are within normal ranges (Allen *et al.*, 1987). The values within the phenanthrene moiety (C1–C14) agree with the corresponding values in related structures (Usman *et al.*, 2002; Wang *et al.*, 2003). As observed in the previously reported compounds, the di-hydrobenzene of the phenanthrene moiety is distorted towards a twisted envelope conformation, with atom C14 0.503 (5) Å from the C1/C6/C7/C12/C13 plane. Ketone atom O2 is displaced in the opposite direction by -0.488 (8) Å. The dihedral angle between rings C1–C6 and C7–C12 is 16.4 (1)°. This values is comparable to that in the related compound reported by Usman *et al.* (2002).

The two fragments attached to atom C15, *viz*. N1/C19/C20/ O5 and C16–C18/O3/O4, are each planar, and the dihedral angle between these fragments is 74.9 (1)°.

The molecules in (I) are linked by an intermolecular O1– $H1A\cdots O5$ hydrogen bond into chains along the *a* axis (Table 2 and Fig. 2), and two other intermolecular interactions, N1– $H2A\cdots O3$ and C20– $H20C\cdots O1$, interconnect the chains into a three-dimensional framework. These interactions, together with van der Waals forces, stabilize the molecular and packing structure in the crystal.

Figure 1

Figure 2

Packing diagram of (I), viewed down the c axis, showing extended chains along the a direction. Dashed lines denote intermolecular interactions.

Experimental

The title compound was prepared by the irradiation of a benzene solution of 9,10-phenanthrenequinone in the presence of an excess amount of oxazole, followed by silica-gel chromatographic separation of the reaction mixture. Single crystals suitable for X-ray crystallographic analysis were prepared by slow evaporation of a dichloromethane-acetone solution.

Crystal data

$C_{20}H_{19}NO_5$	Z = 2
$M_r = 353.36$	$D_x = 1.360 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 7.7205 (5) Å	Cell parameters from 3047
b = 8.8797 (6) Å	reflections
c = 14.1801 (10) Å	$\theta = 2.6-28.3^{\circ}$
$\alpha = 82.795 \ (1)^{\circ}$	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 80.241 \ (1)^{\circ}$	T = 293 (2) K
$\gamma = 64.415 (1)^{\circ}$	Block, pale yellow
$V = 862.63 (10) \text{ Å}^3$	$0.48 \times 0.22 \times 0.18$ mm

Data collection

Siemens SMART CCD area-	2990 independent reflections
detector diffractometer	2553 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.011$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -5 \rightarrow 9$
$T_{\min} = 0.954, \ T_{\max} = 0.983$	$k = -10 \rightarrow 10$
4335 measured reflections	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0553P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.042$	+ 0.2776P]
$wR(F^2) = 0.117$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$
2990 reflections	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
248 parameters	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$
H atoms: see below	
Table 1	

Selected geometric parameters (Å, °).

O1-C14	1.4080 (19)	C13-C14	1.534 (2)
O2-C13	1.209 (2)	C14-C15	1.572 (2)
C1-C14	1.529 (2)		
O1-C14-C1	112.05 (13)	O1-C14-C15	106.05 (13)
O1-C14-C13	111.47 (13)	C1-C14-C15	108.84 (12)
C1-C14-C13	109.74 (13)	C13-C14-C15	108.54 (13)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$D1 - H1A \cdots O5^{i}$ $N1 - H2A \cdots O3^{ii}$ $C20 - H20C \cdots O1^{ii}$	0.85 (3) 0.77 (2) 0.96	2.02 (3) 2.36 (2) 2.43	2.850 (2) 3.106 (2) 3.343 (3)	167 (2) 164 (2) 159

Symmetry codes: (i) x - 1, y, z; (ii) 2 - x, -y, -z.

H atoms were placed geometrically and treated as riding on their parent C atoms, with C–H = 0.93–0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ [for methyl H, $U_{iso} = 1.5U_{eq}(C)$], except for the H atoms at C15, O1 and N1, which were located in difference Fourier maps and refined isotropically. Owing to the large fraction of weak data at higher angles, the 2θ maximum was limited to 50°.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; structure solution: *SHELXTL* (Sheldrick, 1997); structure refinement: *SHELXTL*; molecular graphics: *SHELXTL*; preparation for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 1990).

The authors thank the Malaysian Government and Universiti Sains Malaysia for research grant R&D No. 305/ PFIZIK/610961.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J. H. (2002). Acta Cryst. E**58**, 0956–0958.

Wang, L., Usman, A., Fun, H. K., Zhang, Y. & Xu, J. H. (2003). Acta Cryst. E59, 0721–0722.